First Valley Shadow Detection

Thursday, February 09, 2017

Shadows can be difficult to deal with when introduced into an analysis pipeline. There are many different ways in which to deal with shadows, but I’ve found that one of the easiest ways is to simply mask them out. I work primarily with agricultural data and row-planted crops in particular. In this type of data, the shadows are cast on bare earth between rows, because of that they can be masked out without much heartache, assuming that your target material is the vegetation itself. Depending on what type of imagery is being used, shadows are normally one of the darkest, if not the darkest, surfaces in the image. This assumption can be used to our advantage—in a histogram of the imagery, the shadows should fall at the lower end.

For example, in this image of an orange orchard, the shadows are the darkest feature and thus fall at the bottom of the histogram.

Figure 1: NIR image of orange orchard

Figure 2: Histogram of figure 1

By looking at the imagery, you can see that there is a distinctive valley between two major features. Using the NIR First Valley Method (Jan-Chang, Yi-Ta, Chaur-Tzuhn, & Shou-Tsung, 2016), you can isolate the local minima then use that as the upper bound of a threshold used for shadow masking. The local minima can be easily derived by using the method presented in the support document entitled: “Finding multiple local max/min values for 2D plots with IDL”.

Figure 3: Shadows displayed in red

Figure 4: First valley identified

function local_max_finder, datax, datay, minima = minima
  compile_opt idl2
 
  ;initialize list
  max_points = list()
 
  data_x = datax
  data_y = datay
  
  ;check for keyword, flip the sign of the y values
  if keyword_set(minima) then data_y = -datay
 
  ;iterate through elements
  for i=1, n_elements(data_y)-2 do begin
    ;previous point less than i-th point and next point less than i-th point
    if ( (data_y[i-1] le data_y[i]) AND (data_y[i] ge data_y[i+1])) then max_      points.add, i
  endfor
 
  ;return an array of the indices where the extrema occur
  return, max_points.toarray()
 
end

        
pro ShadowFinder
  compile_opt IDL2
 
  ; Select your image
  e = envi(/current)
  oRaster = e.UI.SelectInputData(/Raster, bands = bands)
 
  ; Check for single band
  if N_ELEMENTS(bands) gt 1 then begin
    MESSAGE, 'Input raster may only contain 1 band', /INFORMATIONAL
    return
  endif
 
  ; Pull the data out of the image
  data = oRaster.GetData(bands = bands, pixel_state = pixel_state)
 
  ; Convert data to float
  data = float(bytscl(data))
 
  ; Mask all values in the image
  bkgrd_pos = where(pixel_state ne 0)
  data[bkgrd_pos] = !VALUES.F_NAN
 
  ; find all local minima based off the histogram of the image
  h = histogram(data, LOCATIONS=xbin)
 
  ; Remove zero values
  non_zeros = where(h ne 0)
  h = h[non_zeros]
  xbin = xbin[non_zeros]
 
  ; Get the number of points
  n_pts = n_elements(h)
 
  ; Smooth data (7 pixel moving average)
  boxcar = 7
  p1 = (boxcar - 1) / 2
  p2 = boxcar - p1
  for i = 0 , n_pts-1 do begin
    pos = [i-p1:i+p1]
    pos = pos[where((pos ge 0) and (pos le n_pts-1))]
    h[i] = mean(h[pos])
  endfor
 
  
  MINIMA = local_max_finder(xbin, h, /MINIMA)
  x_extrema = xbin[MINIMA]
  y_extrema = h[MINIMA]
 
  ; Plot all local minima
  p = plot(xbin, h)
  p3 = scatterplot(x_extrema, y_extrema, /current, /overplot, $
    symbol = 'o', sym_color = 'b', sym_thick = 2)
 
  ; Create a shadow mask
  mask = bytarr(oRaster.ns, oRaster.nl)
  mask[where(data le x_extrema[0])] = 1
 
  ; create a new metadata object
  metadata = ENVIRasterMetadata()
  metadata.AddItem, 'classes', 2
  metadata.AddItem, 'class names', ['Background', 'Shadow']
  metadata.AddItem, 'class lookup', [[0,0,0],[255,0,0]]
  metadata.AddItem, 'data ignore value', 0
  metadata.AddItem, 'band names', 'Shadows'
 
  ; Create a classification image
  oClass = e.CreateRaster(e.GetTemporaryFileName(), mask, SPATIALREF = oRaster.SPATIALREF, $
    data_type = 1, metadata = metadata)
  oClass.save
 
  ; Add the new class image to envi
  e.data.add, oClass
 
 
end

References

Jan-Chang, C., Yi-Ta, H., Chaur-Tzuhn, C., & Shou-Tsung, W. (2016). Evaluation of Automatic Shadow Detection Approaches Using ADS-40 High Radiometric Resolution Aerial Images at High Mountainous Region. Journal of Remote Sensing & GIS.

 

 

Rate this article:
No rating
Tags:

Number of views (742)/Comments (0)

Please login or register to post comments.

Name:
Email:
Subject:
Message:
x

MONTHLY ARCHIVE

«March 2017»
SunMonTueWedThuFriSat
2627281234
567891011
12131415161718
19202122232425
2627282930311
2345678

MOST POPULAR POSTS

AUTHORS

Authors

Authors

Authors

Authors

Authors

Authors

Authors

Authors

Authors

Authors

GUEST AUTHORS

Authors

Authors

Authors

Authors

Authors

Authors

Authors



© 2017 Exelis Visual Information Solutions, Inc., a subsidiary of Harris Corporation