Welcome to the L3 Harris Geospatial documentation center. Here you will find reference guides and help documents.
﻿
>  Docs Center  >  IDL Reference  >  Advanced Math and Stats  >  IMSL_GAMMA_ADV

The IMSL_GAMMA_ADV function evaluates the real gamma function.

The gamma function, Γ(x), is defined to be:

For x < 0, the above definition is extended by analytic continuation.

The gamma function is not defined for integers less than or equal to zero. It underflows for x << 0 and overflows for large x. It also overflows for values near negative integers.

## Example

In this example, Γ(1.5) is computed and printed.

`x	=	1.5`
`ans	=	IMSL_GAMMA_ADV(x)`
`PRINT, 'Gamma(', x, ') =', ans`

IDL prints:

`Gamma( 1.50000) = 0.886227`

## Errors

STAT_SMALL_ARG_UNDERFLOW: The parameter x must be large enough that Γ(x) does not underflow. The underflow limit occurs first for parameters close to large negative half integers. Even though other parameters away from these half integers may yield machine-representable values of Γ(x), such parameters are considered illegal.

### Warning Errors

STAT_NEARR_NEG_INT_WARN: The result is accurate to less than one-half precision because x is too close to a negative integer.

### Fatal Errors

STAT_ZERO_ARG_OVERFLOW: The parameter for the gamma function is too close to zero.

STAT_NEAR_NEG_INT_FATAL: The parameter for the function is too close to a negative integer.

STAT_LARGE_ARG_OVERFLOW: The function overflows because x is too large.

STAT_CANNOT_FIND_XMIN: The algorithm used to find xmin failed. This error should never occur.

STAT_CANNOT_FIND_XMAX: The algorithm used to find xmax failed. This error should never occur.

## Return Value

The value of the gamma function Γ(x).

## Arguments

### X

Point at which the gamma function is to be evaluated.

## Keywords

### DOUBLE (optional)

If present and nonzero, double precision is used.

## Version History

 6.4 Introduced

© 2020 Harris Geospatial Solutions, Inc. |  Legal